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Generalized nematostatics
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(Received 2 May 2000; accepted 21 September 2000)

The generalized equations of bulk and interfacial nematostatics in terms of the tensor order
parameter are derived using calculus of variations, taking into account long and short range
nematic bulk free energies as well as anchoring and saddle–splay surface free energies. A
general expression for the surface stress tensor order parameter for a nematic liquid crystal/
isotropic � uid (NLC/I) interface has been derived, and found to represent normal, shear, and
bending stresses. It is shown that the surface stress tensor is asymmetric. It is also found that
anchoring energy contributes to bending and normal stresses, while saddle–splay energy
contributes to normal and shear stresses. The rotational identi� es governing the bulk and
surface stress tensors are derived and used to show that the equations of nematostatics are
fully consistent with the general balance equations of polar � uids. The equations presented
provide a theoretical framework for solving interfacial problems involving NLCs that is
applicable to cases where variations in liquid crystalline order and saddle–splay energy play
signi� cant roles.

1. Introduction been given in the literature. The present paper aims at
generalizing the existing nematostatic formulations byThe equations of bulk and interfacial nematostatics

are necessary for describing problems involving inter- deriving balance equations for the tensor order parameter,
and by including saddle–splay energy.faces and free surfaces. Cases of current interest include

nematic droplets, freely standing thin � lms, � lled nematics, An important recent observation regarding the inter-
facial nematostatics in the absence of saddle–splay energyand nematic in porous media, to name a few [1–3].

The bulk and interfacial torque balance equations of is that surface stress tensor is a 2 Ö 3 tensor with normal

and bending components, but no shear componentsnematostatics using director theories are well known
[4–7]. Several formulations that take into account [15, 16]. The unique contribution of saddle–splay energy

to the surface stress tensor will be shown to be thesurface gradient energy, known as saddle–splay energy,
have been presented (see, for example, the reviews [8, 9], source of interfacial shear stresses, thus completing the

nature of possible surface stresses. In addition, givenand references therein), and its importance has been
established. On the other hand, the interfacial force that the surface stress tensor has not been widely used in

the LC literature, its nature, symmetry, and its restrictionsbalance equation including saddle–splay energy has not
been considered in any detail. We should note here that arising from material objectivity must be established.

Continuum theories of materials with microstructurealthough the bulk force and torque balance equations

are not independent of each other [4], the same is not are known as polar � uid theories [17]. These theories

take into account the internal structure of the materialthe case for the interfacial counterparts. Thus a better
understanding of the interfacial force balance equation and use force and angular momentum balance equations.

The general balance equations for polar � uids are exactlythat includes saddle–splay energy is necessary.

Interfacial problems in nematostatics usually involve the same as those for nematics, since torques as well
as forces are taken into account. A key signature inchanges in the order parameters and development of

biaxiality [8, 10–12]. Thus formulations of interfacial the bulk torque balance equation is the presence of the

asymmetric stress [17]. In bulk nematostatics this termproblems must use the tensor order parameter Q, which
accounts for nematic ordering as well as orientation. originates from the Ericksen stress [17]. It will be shown

here that the analogous term in the interfacial torqueThe equation of bulk nematostatics at the tensor order
parameter level are well known and have been given balance equation is saddle–splay distortion stresses.

The objectives of this paper are: (1) to develop theby several authors; see, for example, [13, 14]. On the

other hand, the interfacial equations using a tensor order bulk and interfacial nematostatic equations in terms of
the tensor order parameter, including saddle–splay energyparameter and including saddle–splay energies have not
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550 A. D. Rey

for NLC/I interfaces; (2) to identify the origin of the and the divergence theorem, the elastic free energy Fel
becomes:components of the surface stress tensor for a NLC/I

interface, and to establish the restrictions on the surface
stress tensor arising from material objectivity; (3) to Fel 5 P fbg dV 1 P fsg dS (7 a)
show that the derived nematostatic equations are con-
sistent with the continuum mechanical theory of polar
� uids. fbg ( = Q) 5

L 1
2

tr = Q2 1
L 2 1 L 3

2
( = ¯ Q) ¯ ( = Q) (7 b)

2. Nematic free energies where fbg is the bulk gradient elastic free energy density,
The system considered in this paper is a static interface and fsg is the surface gradient free energy density given

between a nematic liquid crystal and an isotropic � uid. by:
The interface is assumed to be isothermal, and both
phases are incompressible. The NLC occupies region

fsg 5 k ¯ g; g 5
L 3
2

[Q5 = Q Õ Q ¯ ( = ¯ Q)]. (8 a,b)RN, and the isotropic � uid region RI. The orientation of
the interface between the RN /RI regions, denoted by

The total bulk energy and its density are:NLC/I, is characterized by a unit normal k, directed
from RN into RI. The NLC structure is given by the
symmetric, traceless, 3 Ö 3 tensor order parameter Q, Fbulk 5 P f dV ; f 5 fbg 1 fH .
usually parametrized as follows [7]:

The anchoring energy Fan is given by [8]:Q 5 S(nn Õ I/3) 1 P(mm Õ II )/3 (1 )

The total free energy of the NLC in the absence of
Fan 5 P can dS (9 a)external � elds is given by [8, 11, 18–21]:

F 5 FH 1 Fel 1 Fan 1 Fis (2 ) can 5 b11 k ¯ N 1 b20Q5 Q 1 b21N ¯ N 1 b22 (k ¯ N )2 ;
where FH is the homogeneous, Fel the elastic, Fan N 5 Q ¯ k (9 b)
the anchoring, and Fis the isotropic free energies.
The homogeneous free energy is responsible for the where can is the anchoring energy density, and {b

ij
}, ij 5

nematic–isotropic phase transition and is given by: 11, 20, 22, 22, are the anchoring coe� cients (energy/area).
Discussions and diŒerent uses of equation (9 b) can be
found in the literature [1, 8, 10–12, 26, 27]. The isotropicFH 5 P fH (Q) dV ; (3 a)
free energy Fis is the surface integral of the usual isotropic
interfacial tension cis . The total surface free energy FsfH (Q) 5 fH (0) 1 a tr Q2 Õ b tr Q3 1 c(tr Q2 )2 (3 b)
and its density c are given in terms of the following sum

where a, b, c are the Landau coe� cients. The elastic free of isotropic, anchoring, and gradient contributions:
energy Fel , also known as Frank energy, contains long
range gradient contributions and is given by:

Fs 5 P c dS (10 a)

Fel 5 P fg dV (4 )
c(Q, k, = sQ) 5 cis 1 can 1 fsg 5 cis 1 can 1 k ¯ g

(10 b)where the gradient free energy density fg is taken to be
[19, 20]:

which now depends on = sQ as well as k, and Q; the
symbol = s represents the surface gradient. By decom-

fg ( = Q) 5
L 1
2

tr = Q2 1
L 2
2

( = ¯ Q) ¯ ( = ¯ Q) 1
L 3
2

( = Q) ( = Q) posing the gradient vector as = (*) 5 kk ¯ = (*) 1 = s (*), it
is possible to show that only surface gradients enter in

(5 ) equation (14), and c 5 c(Q, k, = sQ).

where {L
i
}; i 5 1, 2, 3 are the Frank elastic constants

[19, 20]. More complete expressions for fg are found in 3. Bulk and interfacial static torque balance equations
the literature [21–25], but for the objective of this paper, The bulk and interfacial static torque balance
expression (5) will su� ce. Using the identity: equations are the static limit of the internal angular

momentum balance equations. The bulk static torque
( = Q) ( = Q) 5 ( = ¯ Q) ¯ ( = ¯ Q)

balance equation is well known [14], and details can
be found in the literature. These equations follow fromÕ = ¯ [Q ¯ ( = ¯ Q) Õ Q5 = Q] (6 )
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551Generalized nematostatics

a variation of the tensor order parameter Q (r) � Q ¾ (r). variation of the energy due to a displacement u leads to:
For a NLC in contact with an isotropic � uid, the
variation of the energy due to a variation of Q leads to:

dF 5 P
VN
C f = ¯ u 1

f
= Q

d( = Q)TDdV

dF 5 P C f
Q

5 dQ 1
f

= Q
d( = Q)TD[s]

dV
1 P

S
CPou ¯ k 1 c = s ¯ u 1

c

k
¯ dk

1 P C c

Q
5 dQ 1

c

= sQ
d( = sQ)TD[s]

dS (11)
1

c

= sQ
d( = sQ)TDdS 1 P

VI

Õ pI = ¯ u dV (15)

where [s] denotes symmetric and traceless, and arises
where Po is a constant (hydrostatic pressure) , and pI isbecause Q 5 QT , and Q5 I 5 0. Using the divergence
the pressure in the isotropic phase. The variations dk andtheorem the volume integral is written as:
d( = sQ)T in terms of the surface displacement gradient
( = su)T are simply:P

VN
C f

Q
5 dQ 1

f

= Q
d( = Q)TD[s]

dV

dk 5 Õ k ¯ ( = su)T ; d( = sQ)T 5 Õ ( = sQ)T ¯ ( = su)T

(16)5 P
VN
C f

Q
Õ = ¯ A f

= QBD[s]
5 dQ dV

which yield:

1 P
S
Ck ¯

f
= QD[s]

5 dQ dS. (12)

dF 5 P
VN
C f I Õ

d f
= Q

5 ( = Q)TD 5 ( = u)T dV
Likewise using the surface divergence theorem the
surface integral becomes:

1 P
S
GCIsc Õ Is ¯

c

k
k Õ Is ¯

c

= sQ
5 ( = sQ)TD 5 ( = su)T

P
S
C c

Q
5 dQ 1

c

= sQ
d( = sQ)TD[s]

dS
1 Po u ¯ kHdS 1 P

VI

( Õ pI I )5 ( = u)T dV . (17)

5 P
S
C c

Q
Õ = s ¯ A c

= sQ
BD[s]

5 dQ dS (13)
Using the divergence theorem the volume integral in

the nematic phase becomes:
where edge terms have been omitted. Collecting bulk
and surface terms, the variation dF vanishes if: P

VN
C f I Õ

f
= Q

5 ( = Q)TD 5 ( = u)T dV

C f
Q

Õ = ¯ A f
= QBD[s]

5 0; (14 a)

5 Õ P
VN
G = ¯ C f I Õ

f

= Q
5 ( = Q)TDH ¯ u dV

Ck ¯ A f
= QB 1

c

Q
Õ = s ¯ A c

= sQ
BD[s]

5 0 (14 b)
1 P

S
k ¯ GC f I Õ

f
= Q

5 ( = Q)TD ¯ uHdS. (18)

which are known as the bulk and interfacial torque balance
Using the surface divergence theorem, the surface integralequations. These two equations are not independent of
omitting edge terms becomes:the force balance equations and can be expressed in

terms of the asymmetric components of the bulk and
surface stress tensors, as shown below. P GCIsc Õ Is ¯

c

k
k Õ Is ¯

c

= sQ
5 ( = sQ)TD 5 ( = su)T

4. Bulk and interfacial static stress balance equations
1 Pou ¯ kHdSThe bulk and interfacial static stress balance equations

are the static limit of the linear momentum balance
equations. The bulk static force balance equation is well

5 P Õ GA = s ¯ CIsc Õ Is ¯
c

k
k

known [14], and details can be found in the literature.
These equations follow from a displacement: r � r ¾ 5
r 1 u at constant tensor order parameter: Q(r) 5 Q ¾ (r ¾ ). Õ Is ¯

c

= sQ
5 ( = sQ)TDB ¯ u 1 Po u ¯ kHdS. (19)

For a NLC in contact with an isotropic � uid, the
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552 A. D. Rey

Using the divergence theorem, the volume integral in NLC, the most general surface elastic stress tensor t is
a 2 Ö 3 tensor given by the sum of the normal (tension)the isotropic phase becomes
tn, bending tb, and distortion td stresses:

P
VI

( Õ pI I )5 ( = u)T dV 5 Õ P
VI

[ = ¯ ( Õ pII )] ¯ u dV t 5 tn 1 tb 1 td. (28)

The surface stress tensor can naturally be decomposed
Õ P

S

k ¯ [( Õ pI I ) ¯ u] dS. (20) into the following physically signi� cant contributions:
(a) Normal surface stresses tn :

Thus the force balance equation in the bulk nematic
tn (Q, k, = sQ) 5 cIs . (29)

phase is:
These are the classical 2 Ö 2 tension stresses arising in all
interfaces. For the NLC/I interface, the tension stresses= ¯ C f I Õ

f
= Q

5 ( = Q)TD 5 0. (21)
are a function of Q, k, and = sQ, in addition to the usual
temperature dependence. In particular, surface gradientsSince Po is a constant and appears in the corresponding
of the tensor order parameter = sQ aŒect tn.surface term, we will include it in equation (21) and � nd:

(b) Bending stresses tb :

= ¯ C( f 1 Po )I Õ
f

= Q
5 ( = Q)TD 5 0. (22)

tb (Q, k, = Q) 5 Õ Is ¯ A c

k
kB 5 Õ Is ¯ A can

k
kB Õ Is ¯ gk.

It is customary to express the term in brackets in terms
(30)of the following mechanical quantities:

These are non-classical 2 Ö 3 bending stresses. For the
pN 5 Õ ( f 1 Po ); TE 5 Õ

f
= Q

5 ( = Q)T ; (23 a,b) NLC/I interface, the bending stresses are a function of
Q, k, and = Q, in addition to the usual temperature

TN 5 Õ pN I 1 TE (23 c) dependence. In particular, gradients of the tensor order
parameter = Q at the interface, including surface gradients

where pN is the pressure, TE is the Ericksen stress
= sQ and normal gradients kk ¯ = Q at the interface

tensor, and TN is the total bulk stress tensor. The force
aŒect tb. The bending stress tensor tb is obviously not

balance in the isotropic bulk phase is obtained from
symmetric, and hence neither is t.

equation (20):
(c) Tension and shear distortion stresses td :

= ¯ TI 5 0 (24)

td (Q, k, = sQ) 5 Õ Is ¯
c

= sQ
5 ( = sQ)Twith TI 5 Õ pI I.

The surface integral in equation (17) leads, with the
use of equations (18–20) to the following interfacial

5 Õ Is ¯
(g ¯ k)
= sQ

5 ( = sQ)T. (31)
stress balance equation:

These are non-classical 2 Ö 2 shear and tension stresses.P [k ¯ (TN Õ TI ) Õ = s t] ¯ u dS 5 0 (25)
These stresses are the 2D analogue of the 3 Ö 3 bulk
Ericksen stresses. Since td is not traceless, it contains

where t is the total surface stress tensor: both shear components (i.e. components 12 and 21) and
tension components (i.e. components 11 and 22). For

t 5 Isc Õ Is ¯ A c

k
kB Õ Is ¯

c

= sQ
5 ( = sQ)T . (26) the NLC/I interface, the distortion stresses are a function

of Q, k, and = sQ, in addition to the usual temperature
dependence. In particular, surface gradients of the tensorThus the interfacial stress balance equation is:
order parameter = sQ aŒect td. The distortion stress

Õ k ¯ (TI Õ TN ) 5 = s ¯ t (27)
tensor is not symmetric. Using the expression for fsg , we
� nd that the distortion surface stress tensor is given by:which is indeed the classical expression for interfacial

stress jumps across an interface.

td (Q, k, = sQ) 5 Õ Is ¯
c

= sQ
5 ( = sQ)T 5 Õ

c

= sQ
5 ( = sQ)T

5. Surface stress tensor
In this section we discuss in more detail the surface

5 Õ
L 3
2

{Is ¯ Qk Õ Isk ¯ Q}5 ( = sQ)Tstress tensor t, given that very little discussion has been
presented in the experimental or theoretical literature.
For an interface between an isotropic substrate and a which clearly is not symmetric.
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553Generalized nematostatics

The surface stress tensor given here is consistent Equation (36) implies that the derivative of the surface
free energy density with respect to the rotation angle awith previous work [28]. To check the validity of the
vanishes:expression for the surface stress tensor t given in

equations (28–31), we assume uniaxiality (set P 5 0 in
equation (1) ), neglect saddle–splay energy (set g 5 0,

fsg 5 0 in equations (8a,b)), and obtain:
c(Q*, k*, = *

s Q)

a
5

c

Q*
5

(Q*)T

a
1

c

k*
¯

(k*)T

a

t 5 Is (cis 1 can ) Õ IsC(n ¯ k) ¯ nk (32)

1
c

= *
s Q*

( = *
s Q*)T

a
5 0. (38)

in perfect agreement with the surface stress tensor
expression previously derived by Ericksen [5], Jenkins

and Barrat [6], and Virga [4]. Here C is a given
Since the derivative vanishes for any a, if we pick a 5 0

constant.
we obtain:

6. Rotational identities for the bulk and surface stress
WT5 C c

Q
¯ Q 1 A c

QBT
¯ Q 1

c

k
k 1

c

= sQ
5 ( = sQ)Ttensors

In this section we � nd expressions for the asymmetric
components of the bulk and interfacial stress tensors

in terms of derivatives of the free energy densities; the 1 A c

= sQ
BT321

5 ( = sQ) 1 A c

= sQ
BT231

5 ( = sQ)D 5 0.
expressions are known as rotational identities [7]. These

equations will then be used to establish the connection
(39)between the bulk and interfacial torque and the stress

equations. In what follows we have to present operations

with third order tensors and shall use the following Thus the tensor S:
transposition nomenclature:

(AT123 )
ijk 5 A

ijk
; (AT231 )

ijk 5 A
jki

; (33 a,b)
S 5

c

Q
¯ Q 1 A c

QBT
¯ Q 1

c

k
k 1

c

= sQ
5 ( = sQ)T

(AT321 )
ijk

5 A
jki

; (AT132 )
ijk

5 A
ikj

. (33 c,d)

1 A c

= sQ
BT321

5 ( = sQ) 1 A c

= sQ
BT231

5 ( = sQ)
2.1. Rotational invariance of the surface stress tensor

The surface stress tensor t obeys a rotational identity,

since the energy of the system is invariant when subjected (40)
to a rotation. Let the rotation be de� ned as the following

rotation tensor [4]:
is symmetric, S Õ ST 5 0. Expressing the second and
third terms of S in terms of the surface stress tensor t,R 5 I 1 sin aW 1 (1 Õ cos a)W ¯ W (34)
we � nd:

where

W 5 Õ e ¯ N; W ¯ W 5 Õ (I Õ NN ) (35 a,b)
c

k
k 1

c

= sQ
5 ( = sQ)T 5 Õ t 1 Ak ¯

c

kBkk 1 cIs

and e is the alternator unit tensor. Then since N is the
(41)axis of rotation, the rotation of a vector k by an angle

a is R ¯ k. Since a rotation leaves the energy invariant,

we � nd: and

c(Q, k, = sQ) 5 c(Q*, k*, = *
s Q*) (36)

S 5 Õ t 1 Ak ¯
c

kBkk 1 cIs 1 C c

Q
1 A c

QBTD ¯ Q
where the starred quantities are:

Q* 5 R ¯ Q ¯ RT, k* 5 R ¯ k, = *
s 5 R ¯ = s .

1 CA c

= sQ
BT321

1 A c

= sQ
BT231D5 ( = sQ). (42)

(37 a,b,c)
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554 A. D. Rey

Using the symmetry of S, we � nally arrive at the is symmetric, Y Õ YT 5 0. Expressing the � rst terms of
Y in term of the bulk stress tensor TN, we � nd:rotational identity obeyed by the surface stress tensor:

f
= Q

5 ( = Q)T 5 Õ TN Õ pI (49)t Õ tT 5 GC c

Q
1 A c

QBTD ¯ Q

and
1 CA c

= sQ
BT321

1 A c

= sQ
BT231D 5 ( = sQ)H

Y 5 Õ TN Õ pI 1 C f
Q

1 A f
QBTD ¯ Q

Õ GC c

Q
1 A c

QBTD ¯ Q

1 CA f
= QBT321

1 A f
= QBT231D5 ( = Q). (50)

1 CA c

= sQ
BT321

1 A c

= sQ
BT231D5 ( = sQ)HT

.
Using the symmetry of Y, we � nally arrive at the
rotational identity obeyed by the bulk stress tensor:

(43)
This expression has not been presented before in the

TN Õ (TN )T 5 GC f
Q

1 A f
QBTD ¯ Q

literature but is the exact analogue of the bulk expression,
shown in what follows.

1 CA f
= QBT321

1 A f
= QBT231D 5 ( = Q)H6.2. Rotational identity of the bulk stress tensor

The bulk stress tensor TN also obeys a rotational
identity, since the bulk energy of the system is invariant Õ GC f

Q
1 A f

QBTD ¯ Q
when subjected to a rotation. Since a rotation leaves the
bulk energy invariant, we � nd:

1 CA f
= QBT321

1 A f
= QBT231D 5 ( = Q)HT

.
f (Q, = Q) 5 f (Q*, = *Q*) (44)

(51)where the starred quantities are:

This expression has already been presented in theQ* 5 R ¯ Q ¯ RT, = * 5 R ¯ = . (45 a,b)
literature [14]. Comparing the rotational identities for

Equation (44) implies that the derivative of the bulk free the bulk (equation (51)) and surface (equation (43))
energy density with respect to the rotation angle a stress tensors we � nd that they are completely analogous.
vanishes:

7. Asymmetric stresses in the surface and bulk torque
balance equations

f (Q*, = *Q*)
a

5
f

Q*
5

(Q*)T

a
1

f
= *Q*

( = *Q*)T

a
5 0.

Alternative expressions for the static limit of the
interfacial and bulk internal angular momentum balance(46)
equations are obtained by introducing the following

Since the derivative vanishes for any a, if we pick a 5 0 duals of the asymmetric components of the interfacial
we obtain: and bulk stress tensors:

WT5 C f

Q
¯ Q 1 A f

QBT
¯ Q 1

f

= Q
5 ( = Q)T TN

x 5 Õ e5
1
2

[TN Õ (TN )T ] 5 Õ e5 TN (52)

tN
x 5 Õ e5

1
2

[t Õ (t)T ] 5 Õ e5 t (53)1 A f
= QBT321

5 ( = Q) 1 A f
= QBT231

5 ( = Q)D 5 0.

where e is the alternating third order tensor [17]. The(47)
static limit of the bulk and interfacial internal angular

Thus the tensor Y: momentum equations read, respectively [17]:

TN
x

1 = ¯ Cb 5 0 (54)
Y 5

f
= Q

5 ( = Q)T 1 C f
Q

1 A f
QBTD ¯ Q

tN
x

1 = s ¯ Cs 5 k ¯ Cb (55)

where Cb is the bulk couple stress tensor, and Cs is the1 CA f
= QBT321

1 A f
= QBT231D5 ( = Q) (48)

surface couple stress tensor. The purpose of this section
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555Generalized nematostatics

is to show that the present equations follow the well Taking the double contraction of this equation with the
alternator tensor e, we � nd:known classical format of polar � uids [17]. Similar

polar � uid equations with applications to liquid crystals
0 5 TN

x
1 = ¯ Cb (63)

have been given previously by Papenfuss and Muschik
[29]. which agrees with the classical interfacial equation for

polar � uids; see equation (4.1-8) of reference [17].
7.1. Alternative expression of the surface torque balance

equation 8. Conclusions
Operating on the interfacial torque balance The generalized equations of nematostatics in terms

equation (14 b) as follows: of the tensor order parameter have been derived using
the calculus of variations, and taking into accountCk ¯ A f

= QB 1
c

Q
Õ = s ¯ A c

= sQ
BD[s]

¯ Q interfacial and bulk nematic free energies. The complete
expression for the surface tensor order parameter has
been derived, and is found to contain normal, shear, and

Õ Q ¯ Ck ¯ A f
= QB 1

c

Q
Õ = s ¯ A c

= sQ
BD[s]

5 0 bending stresses. In addition, anchoring energy con-
tributes to bending and normal stresses, while saddle–

(56) splay energy contributes to normal and shear stresses.
The rotational identities governing the bulk and surfacewe � nd after some algebra and with the use of the
stress tensors are derived and used to show that therotational identity (43) that equation (56) becomes:
equations of nematostatics are fully consistent with the

Õ k ¯ ( X Õ XT ) 5 [tN Õ (tN )T ] Õ [( = s ¯ x) Õ ( = s ¯ x)T ] general balance equations of polar � uids.
The equations presented provide a theoretical frame-(57)

work for solving interfacial problems involving nematic
where the bulk X and surface x third order tensor are: liquid crystals that is applicable to cases where variations

in liquid crystalline order and saddle–splay energy play
X 5 C f

= Q
1 A f

= QBT231D ¯ Q; signi� cant roles.
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